
Chapter 12

Graphs

In this chapter, we study two representations of graphs and basic algo-
rithms that use these representations.

Mathematically, a (directed) graph is a pair G = (V ,E) where V is a set
of vertices and E is a set of ordered pairs of vertices called edges. An edge
(i,j) is directed from i to j; i is called the source of the edge and j is
called the target. A path in G is a sequence of vertices v0, . . . , vk such that,
for every i ∈ {1, . . . , k}, the edge (vi−1,vi) is in E. A path v0, . . . , vk is a cycle
if, additionally, the edge (vk ,v0) is in E. A path (or cycle) is simple if all
of its vertices are unique. If there is a path from some vertex vi to some
vertex vj then we say that vj is reachable from vi . An example of a graph
is shown in Figure 12.1.

Due to their ability to model so many phenomena, graphs have an
enormous number of applications. There are many obvious examples.
Computer networks can be modelled as graphs, with vertices correspond-
ing to computers and edges corresponding to (directed) communication
links between those computers. City streets can be modelled as graphs,
with vertices representing intersections and edges representing streets
joining consecutive intersections.

Less obvious examples occur as soon as we realize that graphs can
model any pairwise relationships within a set. For example, in a uni-
versity setting we might have a timetable conflict graph whose vertices
represent courses offered in the university and in which the edge (i,j) is
present if and only if there is at least one student that is taking both class
i and class j. Thus, an edge indicates that the exam for class i should not

247



§12 Graphs

0 1 2 3

7654

8 9 10 11

Figure 12.1: A graph with twelve vertices. Vertices are drawn as numbered circles
and edges are drawn as pointed curves pointing from source to target.

be scheduled at the same time as the exam for class j.
Throughout this section, we will use n to denote the number of ver-

tices of G and m to denote the number of edges of G. That is, n = |V | and
m = |E|. Furthermore, we will assume that V = {0, . . . ,n−1}. Any other data
that we would like to associate with the elements of V can be stored in an
array of length n.

Some typical operations performed on graphs are:

• addEdge(i,j): Add the edge (i,j) to E.

• removeEdge(i,j): Remove the edge (i,j) from E.

• hasEdge(i,j): Check if the edge (i,j) ∈ E

• outEdges(i): Return a List of all integers j such that (i,j) ∈ E

• inEdges(i): Return a List of all integers j such that (j,i) ∈ E

Note that these operations are not terribly difficult to implement ef-
ficiently. For example, the first three operations can be implemented di-
rectly by using a USet, so they can be implemented in constant expected
time using the hash tables discussed in Chapter 5. The last two opera-
tions can be implemented in constant time by storing, for each vertex, a
list of its adjacent vertices.

248



AdjacencyMatrix: Representing a Graph by a Matrix §12.1

However, different applications of graphs have different performance
requirements for these operations and, ideally, we can use the simplest
implementation that satisfies all the application’s requirements. For this
reason, we discuss two broad categories of graph representations.

12.1 AdjacencyMatrix: Representing a Graph by a Matrix

An adjacency matrix is a way of representing an n vertex graph G = (V ,E)
by an n× n matrix, a, whose entries are boolean values.

AdjacencyMatrix
int n;
boolean[][] a;
AdjacencyMatrix(int n0) {

n = n0;
a = new boolean[n][n];

}

The matrix entry a[i][j] is defined as

a[i][j] =


true if (i,j) ∈ E
false otherwise

The adjacency matrix for the graph in Figure 12.1 is shown in Figure 12.2.
In this representation, the operations addEdge(i,j), removeEdge(i,j),

and hasEdge(i,j) just involve setting or reading the matrix entry a[i][j]:

AdjacencyMatrix
void addEdge(int i, int j) {

a[i][j] = true;
}
void removeEdge(int i, int j) {

a[i][j] = false;
}
boolean hasEdge(int i, int j) {

return a[i][j];
}

249



§12.1 Graphs

0 1 2 3

7654

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 0 0 0
2 1 0 0 1 0 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0 1 0 0 0 0
4 1 0 0 0 0 1 0 0 1 0 0 0
5 0 1 1 0 1 0 1 0 0 1 0 0
6 0 0 1 0 0 1 0 1 0 0 1 0
7 0 0 0 1 0 0 1 0 0 0 0 1
8 0 0 0 0 1 0 0 0 0 1 0 0
9 0 0 0 0 0 1 0 0 1 0 1 0

10 0 0 0 0 0 0 1 0 0 1 0 1
11 0 0 0 0 0 0 0 1 0 0 1 0

Figure 12.2: A graph and its adjacency matrix.

250



AdjacencyMatrix: Representing a Graph by a Matrix §12.1

These operations clearly take constant time per operation.
Where the adjacency matrix performs poorly is with the outEdges(i)

and inEdges(i) operations. To implement these, we must scan all n en-
tries in the corresponding row or column of a and gather up all the in-
dices, j, where a[i][j], respectively a[j][i], is true.

AdjacencyMatrix
List<Integer> outEdges(int i) {

List<Integer> edges = new ArrayList<Integer>();
for (int j = 0; j < n; j++)

if (a[i][j]) edges.add(j);
return edges;

}
List<Integer> inEdges(int i) {

List<Integer> edges = new ArrayList<Integer>();
for (int j = 0; j < n; j++)

if (a[j][i]) edges.add(j);
return edges;

}

These operations clearly take O(n) time per operation.
Another drawback of the adjacency matrix representation is that it

is large. It stores an n × n boolean matrix, so it requires at least n2 bits
of memory. The implementation here uses a matrix of boolean values
so it actually uses on the order of n2 bytes of memory. A more careful
implementation, which packs w boolean values into each word of memory,
could reduce this space usage to O(n2/w) words of memory.

Theorem 12.1. The AdjacencyMatrix data structure implements the Graph
interface. An AdjacencyMatrix supports the operations

• addEdge(i,j), removeEdge(i,j), and hasEdge(i,j) in constant time
per operation; and

• inEdges(i), and outEdges(i) in O(n) time per operation.

The space used by an AdjacencyMatrix is O(n2).

Despite its high memory requirements and poor performance of the
inEdges(i) and outEdges(i) operations, an AdjacencyMatrix can still be

251



§12.2 Graphs

useful for some applications. In particular, when the graphG is dense, i.e.,
it has close to n2 edges, then a memory usage of n2 may be acceptable.

The AdjacencyMatrix data structure is also commonly used because
algebraic operations on the matrix a can be used to efficiently compute
properties of the graph G. This is a topic for a course on algorithms,
but we point out one such property here: If we treat the entries of a as
integers (1 for true and 0 for false) and multiply a by itself using matrix
multiplication then we get the matrix a2. Recall, from the definition of
matrix multiplication, that

a2[i][j] =
n−1∑

k=0

a[i][k] · a[k][j] .

Interpreting this sum in terms of the graph G, this formula counts the
number of vertices, k, such that G contains both edges (i,k) and (k,j).
That is, it counts the number of paths from i to j (through intermediate
vertices, k) whose length is exactly two. This observation is the founda-
tion of an algorithm that computes the shortest paths between all pairs of
vertices in G using only O(logn) matrix multiplications.

12.2 AdjacencyLists: A Graph as a Collection of Lists

Adjacency list representations of graphs take a more vertex-centric ap-
proach. There are many possible implementations of adjacency lists. In
this section, we present a simple one. At the end of the section, we dis-
cuss different possibilities. In an adjacency list representation, the graph
G = (V ,E) is represented as an array, adj, of lists. The list adj[i] contains
a list of all the vertices adjacent to vertex i. That is, it contains every
index j such that (i,j) ∈ E.

AdjacencyLists
int n;
List<Integer>[] adj;
AdjacencyLists(int n0) {

n = n0;
adj = (List<Integer>[])new List[n];
for (int i = 0; i < n; i++)

252



AdjacencyLists: A Graph as a Collection of Lists §12.2

0 1 2 3

7654

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
1 0 1 2 0 1 5 6 4 8 9 10
4 2 3 7 5 2 2 3 9 5 6 7

6 6 8 6 7 11 10 11
5 9 10

4

Figure 12.3: A graph and its adjacency lists

adj[i] = new ArrayStack<Integer>();
}

(An example is shown in Figure 12.3.) In this particular implementa-
tion, we represent each list in adj as an ArrayStack, because we would
like constant time access by position. Other options are also possible.
Specifically, we could have implemented adj as a DLList.

The addEdge(i,j) operation just appends the value j to the list adj[i]:

AdjacencyLists
void addEdge(int i, int j) {

adj[i].add(j);
}

This takes constant time.
The removeEdge(i,j) operation searches through the list adj[i] until

it finds j and then removes it:

253



§12.2 Graphs

AdjacencyLists
void removeEdge(int i, int j) {

Iterator<Integer> it = adj[i].iterator();
while (it.hasNext()) {

if (it.next() == j) {
it.remove();
return;

}
}

}

This takes O(deg(i)) time, where deg(i) (the degree of i) counts the
number of edges in E that have i as their source.

The hasEdge(i,j) operation is similar; it searches through the list
adj[i] until it finds j (and returns true), or reaches the end of the list
(and returns false):

AdjacencyLists
boolean hasEdge(int i, int j) {

return adj[i].contains(j);
}

This also takes O(deg(i)) time.
The outEdges(i) operation is very simple; it returns the list adj[i]:

AdjacencyLists
List<Integer> outEdges(int i) {

return adj[i];
}

This clearly takes constant time.
The inEdges(i) operation is much more work. It scans over every

vertex j checking if the edge (i,j) exists and, if so, adding j to the output
list:

AdjacencyLists
List<Integer> inEdges(int i) {

List<Integer> edges = new ArrayStack<Integer>();

254



AdjacencyLists: A Graph as a Collection of Lists §12.2

for (int j = 0; j < n; j++)
if (adj[j].contains(i)) edges.add(j);

return edges;
}

This operation is very slow. It scans the adjacency list of every vertex,
so it takes O(n+ m) time.

The following theorem summarizes the performance of the above data
structure:

Theorem 12.2. The AdjacencyLists data structure implements the Graph
interface. An AdjacencyLists supports the operations

• addEdge(i,j) in constant time per operation;

• removeEdge(i,j) and hasEdge(i,j) in O(deg(i)) time per operation;

• outEdges(i) in constant time per operation; and

• inEdges(i) in O(n+ m) time per operation.

The space used by a AdjacencyLists is O(n+ m).

As alluded to earlier, there are many different choices to be made
when implementing a graph as an adjacency list. Some questions that
come up include:

• What type of collection should be used to store each element of adj?
One could use an array-based list, a linked-list, or even a hashtable.

• Should there be a second adjacency list, inadj, that stores, for each
i, the list of vertices, j, such that (j,i) ∈ E? This can greatly reduce
the running-time of the inEdges(i) operation, but requires slightly
more work when adding or removing edges.

• Should the entry for the edge (i,j) in adj[i] be linked by a reference
to the corresponding entry in inadj[j]?

• Should edges be first-class objects with their own associated data?
In this way, adj would contain lists of edges rather than lists of
vertices (integers).

255



§12.3 Graphs

Most of these questions come down to a tradeoff between complexity (and
space) of implementation and performance features of the implementa-
tion.

12.3 Graph Traversal

In this section we present two algorithms for exploring a graph, starting
at one of its vertices, i, and finding all vertices that are reachable from
i. Both of these algorithms are best suited to graphs represented using
an adjacency list representation. Therefore, when analyzing these algo-
rithms we will assume that the underlying representation is an Adjacen-
cyLists.

12.3.1 Breadth-First Search

The bread-first-search algorithm starts at a vertex i and visits, first the
neighbours of i, then the neighbours of the neighbours of i, then the
neighbours of the neighbours of the neighbours of i, and so on.

This algorithm is a generalization of the breadth-first traversal algo-
rithm for binary trees (Section 6.1.2), and is very similar; it uses a queue,
q, that initially contains only i. It then repeatedly extracts an element
from q and adds its neighbours to q, provided that these neighbours have
never been in q before. The only major difference between the breadth-
first-search algorithm for graphs and the one for trees is that the algo-
rithm for graphs has to ensure that it does not add the same vertex to q
more than once. It does this by using an auxiliary boolean array, seen,
that tracks which vertices have already been discovered.

Algorithms
void bfs(Graph g, int r) {

boolean[] seen = new boolean[g.nVertices()];
Queue<Integer> q = new SLList<Integer>();
q.add(r);
seen[r] = true;
while (!q.isEmpty()) {

int i = q.remove();
for (Integer j : g.outEdges(i)) {

256



Graph Traversal §12.3

0 1 3 7

8452

6 10 9 11

Figure 12.4: An example of bread-first-search starting at node 0. Nodes are la-
belled with the order in which they are added to q. Edges that result in nodes
being added to q are drawn in black, other edges are drawn in grey.

if (!seen[j]) {
q.add(j);
seen[j] = true;

}
}

}
}

An example of running bfs(g,0) on the graph from Figure 12.1 is
shown in Figure 12.4. Different executions are possible, depending on
the ordering of the adjacency lists; Figure 12.4 uses the adjacency lists in
Figure 12.3.

Analyzing the running-time of the bfs(g,i) routine is fairly straight-
forward. The use of the seen array ensures that no vertex is added to q
more than once. Adding (and later removing) each vertex from q takes
constant time per vertex for a total of O(n) time. Since each vertex is pro-
cessed by the inner loop at most once, each adjacency list is processed at
most once, so each edge of G is processed at most once. This processing,
which is done in the inner loop takes constant time per iteration, for a
total of O(m) time. Therefore, the entire algorithm runs in O(n+ m) time.

The following theorem summarizes the performance of the bfs(g,r)
algorithm.

257



§12.3 Graphs

Theorem 12.3. When given as input a Graph, g, that is implemented using
the AdjacencyLists data structure, the bfs(g,r) algorithm runs in O(n+ m)
time.

A breadth-first traversal has some very special properties. Calling
bfs(g,r) will eventually enqueue (and eventually dequeue) every vertex
j such that there is a directed path from r to j. Moreover, the vertices at
distance 0 from r (r itself) will enter q before the vertices at distance 1,
which will enter q before the vertices at distance 2, and so on. Thus, the
bfs(g,r) method visits vertices in increasing order of distance from r and
vertices that cannot be reached from r are never visited at all.

A particularly useful application of the breadth-first-search algorithm
is, therefore, in computing shortest paths. To compute the shortest path
from r to every other vertex, we use a variant of bfs(g,r) that uses an
auxilliary array, p, of length n. When a new vertex j is added to q, we set
p[j] = i. In this way, p[j] becomes the second last node on a shortest path
from r to j. Repeating this, by taking p[p[j], p[p[p[j]]], and so on we can
reconstruct the (reversal of) a shortest path from r to j.

12.3.2 Depth-First Search

The depth-first-search algorithm is similar to the standard algorithm for
traversing binary trees; it first fully explores one subtree before returning
to the current node and then exploring the other subtree. Another way to
think of depth-first-search is by saying that it is similar to breadth-first
search except that it uses a stack instead of a queue.

During the execution of the depth-first-search algorithm, each vertex,
i, is assigned a colour, c[i]: white if we have never seen the vertex before,
grey if we are currently visiting that vertex, and black if we are done
visiting that vertex. The easiest way to think of depth-first-search is as a
recursive algorithm. It starts by visiting r. When visiting a vertex i, we
first mark i as grey. Next, we scan i’s adjacency list and recursively visit
any white vertex we find in this list. Finally, we are done processing i, so
we colour i black and return.

Algorithms
void dfs(Graph g, int r) {

258



Graph Traversal §12.3

0 1 2 3

411109

8 7 6 5

Figure 12.5: An example of depth-first-search starting at node 0. Nodes are la-
belled with the order in which they are processed. Edges that result in a recursive
call are drawn in black, other edges are drawn in grey.

byte[] c = new byte[g.nVertices()];
dfs(g, r, c);

}
void dfs(Graph g, int i, byte[] c) {

c[i] = grey; // currently visiting i
for (Integer j : g.outEdges(i)) {

if (c[j] == white) {
c[j] = grey;
dfs(g, j, c);

}
}
c[i] = black; // done visiting i

}

An example of the execution of this algorithm is shown in Figure 12.5.
Although depth-first-search may best be thought of as a recursive al-

gorithm, recursion is not the best way to implement it. Indeed, the code
given above will fail for many large graphs by causing a stack overflow.
An alternative implementation is to replace the recursion stack with an
explicit stack, s. The following implementation does just that:

Algorithms
void dfs2(Graph g, int r) {

259



§12.3 Graphs

byte[] c = new byte[g.nVertices()];
Stack<Integer> s = new Stack<Integer>();
s.push(r);
while (!s.isEmpty()) {

int i = s.pop();
if (c[i] == white) {
c[i] = grey;
for (int j : g.outEdges(i))

s.push(j);
}

}
}

In the preceding code, when the next vertex, i, is processed, i is
coloured grey and then replaced, on the stack, with its adjacent vertices.
During the next iteration, one of these vertices will be visited.

Not surprisingly, the running times of dfs(g,r) and dfs2(g,r) are the
same as that of bfs(g,r):

Theorem 12.4. When given as input a Graph, g, that is implemented using
the AdjacencyLists data structure, the dfs(g,r) and dfs2(g,r) algorithms
each run in O(n+ m) time.

As with the breadth-first-search algorithm, there is an underlying tree
associated with each execution of depth-first-search. When a node i , r
goes from white to grey, this is because dfs(g,i,c) was called recursively
while processing some node i′ . (In the case of dfs2(g,r) algorithm, i is
one of the nodes that replaced i′ on the stack.) If we think of i′ as the
parent of i, then we obtain a tree rooted at r. In Figure 12.5, this tree is a
path from vertex 0 to vertex 11.

An important property of the depth-first-search algorithm is the fol-
lowing: Suppose that when node i is coloured grey, there exists a path
from i to some other node j that uses only white vertices. Then j will be
coloured first grey then black before i is coloured black. (This can be
proven by contradiction, by considering any path P from i to j.)

One application of this property is the detection of cycles. Refer to
Figure 12.6. Consider some cycle, C, that can be reached from r. Let
i be the first node of C that is coloured grey, and let j be the node that

260



Discussion and Exercises §12.4

ij
C

P

Figure 12.6: The depth-first-search algorithm can be used to detect cycles in G.
The node j is coloured grey while i is still grey. This implies that there is a path,
P , from i to j in the depth-first-search tree, and the edge (j,i) implies that P is
also a cycle.

precedes i on the cycle C. Then, by the above property, j will be coloured
grey and the edge (j,i) will be considered by the algorithm while i is still
grey. Thus, the algorithm can conclude that there is a path, P , from i to
j in the depth-first-search tree and the edge (j,i) exists. Therefore, P is
also a cycle.

12.4 Discussion and Exercises

The running times of the depth-first-search and breadth-first-search al-
gorithms are somewhat overstated by the Theorems 12.3 and 12.4. De-
fine nr as the number of vertices, i, of G, for which there exists a path
from r to i. Define mr as the number of edges that have these vertices
as their sources. Then the following theorem is a more precise statement
of the running times of the breadth-first-search and depth-first-search al-
gorithms. (This more refined statement of the running time is useful in
some of the applications of these algorithms outlined in the exercises.)

Theorem 12.5. When given as input a Graph, g, that is implemented using
the AdjacencyLists data structure, the bfs(g,r), dfs(g,r) and dfs2(g,r)
algorithms each run in O(nr + mr) time.

Breadth-first search seems to have been discovered independently by
Moore [52] and Lee [49] in the contexts of maze exploration and circuit
routing, respectively.

Adjacency-list representations of graphs were presented by Hopcroft
and Tarjan [40] as an alternative to the (then more common) adjacency-

261



§12.4 Graphs

61

5

0
9

4

7

2
8

3

Figure 12.7: An example graph.

matrix representation. This representation, as well as depth-first-search,
played a major part in the celebrated Hopcroft-Tarjan planarity testing
algorithm that can determine, in O(n) time, if a graph can be drawn, in
the plane, and in such a way that no pair of edges cross each other [41].

In the following exercises, an undirected graph is one in which, for
every i and j, the edge (i,j) is present if and only if the edge (j,i) is
present.

Exercise 12.1. Draw an adjacency list representation and an adjacency
matrix representation of the graph in Figure 12.7.

Exercise 12.2. The incidence matrix representation of a graph, G, is an
n× m matrix, A, where

Ai,j =



−1 if vertex i the source of edge j
+1 if vertex i the target of edge j
0 otherwise.

1. Draw the incident matrix representation of the graph in Figure 12.7.

2. Design, analyze and implement an incidence matrix representation
of a graph. Be sure to analyze the space, the cost of addEdge(i,j),
removeEdge(i,j), hasEdge(i,j), inEdges(i), and outEdges(i).

Exercise 12.3. Illustrate an execution of the bfs(G,0) and dfs(G,0) on the
graph, G, in Figure 12.7.

262



Discussion and Exercises §12.4

Exercise 12.4. Let G be an undirected graph. We say G is connected if, for
every pair of vertices i and j in G, there is a path from i to j (since G
is undirected, there is also a path from j to i). Show how to test if G is
connected in O(n+ m) time.

Exercise 12.5. Let G be an undirected graph. A connected-component la-
belling of G partitions the vertices of G into maximal sets, each of which
forms a connected subgraph. Show how to compute a connected compo-
nent labelling of G in O(n+ m) time.

Exercise 12.6. Let G be an undirected graph. A spanning forest of G is a
collection of trees, one per component, whose edges are edges of G and
whose vertices contain all vertices ofG. Show how to compute a spanning
forest of of G in O(n+ m) time.

Exercise 12.7. We say that a graph G is strongly-connected if, for every
pair of vertices i and j in G, there is a path from i to j. Show how to test
if G is strongly-connected in O(n+ m) time.

Exercise 12.8. Given a graph G = (V ,E) and some special vertex r ∈ V ,
show how to compute the length of the shortest path from r to i for every
vertex i ∈ V .

Exercise 12.9. Give a (simple) example where the dfs(g,r) code visits the
nodes of a graph in an order that is different from that of the dfs2(g,r)
code. Write a version of dfs2(g,r) that always visits nodes in exactly the
same order as dfs(g,r). (Hint: Just start tracing the execution of each
algorithm on some graph where r is the source of more than 1 edge.)

Exercise 12.10. A universal sink in a graph G is a vertex that is the target
of n − 1 edges and the source of no edges.1 Design and implement an
algorithm that tests if a graph G, represented as an AdjacencyMatrix,
has a universal sink. Your algorithm should run in O(n) time.

1A universal sink, v, is also sometimes called a celebrity: Everyone in the room recognizes
v, but v doesn’t recognize anyone else in the room.

263


